理化学研究所 計算科学研究センター 高性能ビッグデータ研究チーム

JP EN

ACHIEVEMENTS / 研究業績

FY2024

  • [50] Haiwen Chen, Songcan Yu, Shupeng Zhao, Junbo Wang, Kaiming Zhu, Kento Sato, “FedSD: Cross-Heterogeneous Federated Learning Based on Self-Distillation”, In 21th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, Kyoto, Japan. (To appear in the proceedings)
  • [49] Xiang Fu, Shiman Meng, Weiping Zhang, Luanzheng Guo, Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, Martin Schulz, “Distributed Order Recording Techniques for Efficient Record-and-Replay of Multi-threaded Programs”, IEEE Cluster 2024, Kobe, Hyogo, Japan. (Best Paper Nomination) (To appear in the proceedings)
  • [48] Ana Luisa Veroneze Solorzano, Kento Sato, Devesh Tiwari, Keiji Yamamoto, Jim Brandt, Benjamin Schwaller, Sara Petra Walton, Jennifer Green, Fumiyoshi Shoji, “Toward Sustainable HPC: In-Production Deployment of Incentive-Based Power Efficiency Mechanism on the Fugaku Supercomputer”, SC ’24: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA. (Best Student Award Nomination) (To appear in the proceedings)
  • [47] Xiang Fu, Weiping Zhang, Xin Huang, Wubiao Xu, Shiman Meng, Luanzheng Guo, Kento Sato, “AutoCheck: Automatically Identifying Variables for Checkpointing by Data Dependency Analysis”, SC ’24: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA. [arXiv:2408.06082] (To appear in the proceedings)
  • [46] Franck Cappello, Sheng Di, Robert Underwood, Dingwen Tao, Jon Calhoun, Yoshii Kazutomo, Kento Sato, Amarjit Singh, Luc Giraud, Emmanuel Agullo, Xavier Yepes, Mario Acosta, Sian Jin, Jiannan Tian, Frédéric Vivien, Boyuan Zhang, Kentaro Sano, Tomohiro Ueno, Thomas Grützmacher, Hartwig Anzt, Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing, Future Generation Computer Systems, 2024, ISSN 0167-739X, https://doi.org/10.1016/j.future.2024.05.022
  • [45] Ryubu Hosoki, Kento Sato, Toshio Endo, Julien Bigot, Edouard Audit. “An optimization pass for training speed-up and strategy search in 3D parallelism”, IPSJ SIG Technical Report, 2024-HPC-194, No.7, May 8, 2024.
  • [44] Xiang Fu, Xin Huang, Wubiao Xu, Shiman Meng, Weiping Zhang, Luanzheng Guo, Kento Sato, “Benchmarking variables for checkpointing in HPC Applications”, The 5th Workshop on Extreme-Scale Storage and Analysis (ESSA2024) in 2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), June, San Francisco, USA , 2024, doi:10.1109/IPDPSW63119.2024.00090

FY2023

  • [43] Andrès Rubio Proaño and Kento Sato, “Power Consumption Metric on Heterogeneous Memory Systems”, the 6th R-CCS International Symposium (RCCS-IS6), Kobe, Japan, Feb. 2024 (Poster)
  • [42] Amarjit Singh and Kento Sato, “TEZip Integration in LibPressio: Bridging Dynamic Application Capabilities with a Static C Environment”, the 6th R-CCS International Symposium (RCCS-IS6), Kobe, Japan, Feb. 2024 (Poster)
  • [41] Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis and Michio Honda, “Accelerating Scientific Application through Transparent I/O Interposition”, arXiv/2401.14576, Jan., 2024
  • [40] Andrès Xavier Rubio Proaño, Kento Sato, “Understanding Power Consumption Metric on Heterogeneous Memory Systems”, The 29th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2023), Sentosa, Hainan, China, Dec. 2023 [arXiv:2408.06579v1]
  • [39] Taiyu Wang, Qinglin Yang, Kaiming Zhu, Junbo Wang, Chunhua Su, Kento Sato, “LDS-FL: Loss Differential Strategy based Federated Learning for Privacy Preserving,” in IEEE Transactions on Information Forensics and Security, doi: 10.1109/TIFS.2023.3322328. , 2023
  • [38] Satoru Hamamoto, Masaki Oura, Atsuomi Shundo, Daisuke Kawaguchi, SatoruYamamoto, Hidekazu Takano, Masayuki Uesugi, Akihisa Takeuchi, TakahiroIwai, Yasuo Seto, Yasumasa Joti, Kento Sato, Keiji Tanaka & Takaki Hatsui (2023) Demonstration of efficient transfer learning in segmentation problem in synchrotron radiation X-ray CT data for epoxy resin, Science and Technology of Advanced Materials: Methods, DOI: 10.1080/27660400.2023.2270529, 2023 (Selected as Editor’s Choice Collection)
  • [37] Isita Talukdar, Amarjit Singh, Robert Underwood, Kento Sato, Weikuan Yu, “Integrating TEZIP into LibPressio: A Case Study of Integrating a Dynamic Application into a Static C Environment”, In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis 2023 (SC23), Research Poster, Denver, USA, Nov, 2023 (Poster).
  • [36] Takahiro Hirofuchi, Takaaki Fukai, Akram Ben Ahmed, Ryousei Takano and Kento Sato, “METICULOUS: An FPGA-based Main Memory Emulator for System Software Studies”, Sep., 2023, arXiv:2309.06565
  • [35] Steven W. D. Chien, Kento Sato, Artur Podobas, Niclas Jansson, Stefano Markidis and Michio Honda, “Improving Cloud Storage Network Bandwidth Utilization of Scientific Applications”, 7th Asia-Pacific Workshop on Networking, June, 2023 (Poster)
  • [34] Satoshi Matsuoka, Kento Sato, Mohamed Wahib and Aleksandr Drozd, “The First Exascale Supercomputer Accelerating AI-for-Science and Beyond”, Artificial Intelligence for Science, Chapter 9, 145-161, DOI:10.1142/9789811265679_0009, May, 2023 (Book Chapter)
  • [33] Amarjit Singh and Kento Sato,”Development of an Infrastructure for Big Data Collection, Analysis, and Utilization in Large Scale Research Facilities”, 9th IEEE International Smart Cities Conference 2023 (ISC23), May, 2023 (Poster)
  • [32] Fu Xiang, Hao Tang, Huimin Liao, Xin Huang, Wubiao Xu, Shimeng Meng, Weiping Zhang, Luanzheng Guo and Kento Sato, “A High-dimensional Algorithm-Based Fault Tolerance Scheme,” APDCM 2023, IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), St. Petersburg, Florida USA, 2023, DOI: 10.1109/IPDPSW59300.2023.00061

FY2022

  • [31] Andrès Rubio Proaño and Kento Sato, “Memory Power Consumption on Heterogeneous Memory Systems”, 15th JLESC Workshop, Bordeaux, France, Mar. 2023 (Poster)
  • [30] Andrès Rubio Proaño and Kento Sato, “ Power Consumption Metric on Heterogeneous Memory Systems ”, the 5th R-CCS International Symposium (RCCS-IS5), Kobe, Japan, Feb. 2023 (Poster)
  • [29] Amarjit Singh and Kento Sato, “Research and Development of an Infrastructure for Big Data Collection, Analysis, and Utilization in Large Scale Research Facilities”, the 5th R-CCS International Symposium (RCCS-IS5), Kobe, Japan, Feb. 2023 (Poster)
  • [28] Takaaki Fukai, Kento Sato and Takahiro Hirofuchi, “Analyzing I/O Performance of a Hierarchical HPC Storage System for Distributed Deep Learning”, The 23rd International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’22), December, 2022, Sendai, Japan
  • [27] Xi Zhu, Junbo Wang, Wuhui Chen, Kento Sato, “Model compression and privacy preserving framework for federated learning”, Future Generation Computer Systems, 2022, ISSN 0167-739X, https://doi.org/10.1016/j.future.2022.10.026
  • [26] T.N. Truong, F. Trahay, J. Domke, A. Drozd, E. Vatai, J. Liao, M. Wahib, B. Gerofi, “Why Globally Re-shuffle? Revisiting Data Shuffling in Large Scale Deep Learning,” in Proceedings of the 36th IEEE International Parallel & Distributed Processing Symposium (IPDPS), (Lyon, France), IEEE Computer Society, May 2022.
  • [25] S. Matsuoka, J. Domke, M. Wahib, A. Drozd, R. Bair, A.A. Chien, J.S. Vetter, J. Shalf, “Preparing for the Future—Rethinking Proxy Applications,” in Computing in Science & Engineering (CiSE), vol. 24, no. 2, May 2022.

FY2021

  • [24] Amitangshu Pal, Junbo Wang, Yilang Wu, Krishna Kant, Zhi Liu, Kento Sato, “Social Media Driven Big Data Analysis for Disaster Situation Awareness: A Tutorial”, in IEEE Transactions on Big Data, doi: 10.1109/TBDATA.2022.3158431, Mar., 2022
  • [23] Takaki Fukai, Kento Sato “Measurement of I/O Performance on a Hierarchical File System for Distributed Deep Neural Network”, the 4th R-CCS International Symposium (RCCS-IS4), Kobe, Japan, Feb. 2022 (Lightning Presentation)
  • [22] Andrès Rubio Proaño, “Determining Criteria for Data Allocation in Heterogeneous Memory Systems for HPC Applications”, the 4th R-CCS International Symposium (RCCS-IS4), Kobe, Japan, Feb. 2022 (Lightning Presentation)
  • [21] Ivan Ivanov, Jens Domke and Toshio Endo, “Automatic translation of CUDA code into high performance CPU code using LLVM IR transformations”, the 4th R-CCS International Symposium (RCCS-IS4), Kobe, Japan, Feb., 2022 (Lightning Presentation)
  • [20] Feiyuan Liang, Qinglin Yang, Ruiqi Liu, Junbo Wang, Kento Sato, Jian Guo, “Semi-Synchronous Federated Learning Protocol with Dynamic Aggregation in Internet of Vehicles,” in IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2022.3148872, Feb., 2022
  • [19] Akihiro Tabuchi, Koichi Shirahata, Masafumi Yamazaki, Akihiko Kasagi, Takumi Honda, Kouji Kurihara, Kentaro Kawakami, Tsuguchika Tabaru, Naoto Fukumoto, Akiyoshi Kuroda, Takaaki Fukai and Kento Sato, “The 16,384-node Parallelism of 3D-CNN Training on An Arm CPU based Supercomputer”, 28th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC2021), Nov, 2021
  • [18] Steven Farrell, Murali Emani, Jacob Balma, Lukas Drescher, Aleksandr Drozd, Andreas Fink, Geoffrey Fox, David Kanter, Thorsten Kurth, Peter Mattson, Dawei Mu, Amit Ruhela, Kento Sato,,Koichi Shirahata, Tsuguchika Tabaru, Aristeidis Tsaris, Jan Balewski, Ben Cumming, Takumi Danjo, Jens Domke, Takaaki Fukai, Naoto Fukumoto, Tatsuya Fukushi, Balazs Gerofi, Takumi Honda, Toshiyuki Imamura, Akihiko Kasagi, Kentaro Kawakami, Shuhei Kudo, Akiyoshi Kuroda, Maxime Martinasso, Satoshi Matsuoka, Kazuki Minami, Prabhat Ram, Takashi Sawada, Mallikarjun Shankar, Tom St. John, Akihiro Tabuchi, Venkatram Vishwanath, Mohamed Wahib, Masafumi Yamazaki, Junqi Yin and Henrique Mendonca, “MLPerf HPC: A Holistic Benchmark Suite for Scientific Machine Learning on HPC Systems”, The Workshop on Machine Learning in High Performance Computing Environments (MLHPC) 2021 in conjunction with SC21, Nov, 2021
  • [17] J. Domke, “A64FX – Your Compiler You Must Decide!,” in Proceedings of the 2021 IEEE International Conference on Cluster Computing (CLUSTER), EAHPC Workshop, (Portland, Oregon, USA), IEEE Computer Society, Sept. 2021.
  • [16] 深井 貴明, 広渕 崇宏, 高野 了成, Akram Ben Ahmed, 佐藤 賢斗, “FPGAによる次世代メモリのエミュレーション機構” , 第180回 研究報告ハイパフォーマンスコンピューティング(HPC研究会), July 2021.
  • [15] Rupak Roy, Kento Sato, Subhadeep Bhattacharya, Xingang Fang, Yasumasa Joti, Takaki Hatsui, Toshiyuki Hiraki, Jian Guo and Weikuan Yu, “Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks”, In the proceedings of the 21 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), May, 2021
  • [14] J. Domke, E. Vatai, A. Drozd, P. Chen, Y. Oyama, L. Zhang, S. Salaria, D. Mukunoki, A. Podobas, M. Wahib, S. Matsuoka, “Matrix Engines for High Performance Computing: A Paragon of Performance or Grasping at Straws?,” in Proceedings of the 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS), (Portland, Oregon, USA), IEEE Computer Society, May 2021.

FY2020

  • [13] I.R. Ivanov, J. Domke, A. Nomura, T. Endo, “Improved failover for HPC interconnects through localised routing restoration” Poster presented at The 3rd R-CCS International Symposium (RCCS-IS3), Kobe, Japan, Feb. 2021.
  • [12] Takaaki Fukai, Kento Sato, “Measurement of I/O performance for distributed deep neural networks on Fugaku”, The 3rd R-CCS International Symposium, Feb, 2021
  • [11] Atsushi Nukariya, Kazutoshi Akao, Jin Takahashi, Naoto Fukumoto, Kentaro Kawakami, Akiyoshi Kuroda, Kazuo Minami, Kento Sato and Satoshi Matsuoka, “HPC and AI Initiatives for Supercomputer Fugaku and Future Prospects”, Fujitsu Technical Review, November, 2020
  • [10] Tonmoy Dey, Kento Sato, Bogdan Nicolae, Jian Guo, Jens Domke, Weikuan Yu, Franck Cappello, and Kathryn Mohror. “Optimizing Asynchronous Multi-Level Checkpoint/Restart Configurations with Machine Learning.” The IEEE International Workshop on High-Performance Storage, May, 2020
  • [9] M. Besta, J. Domke, M. Schneider, M. Konieczny, S.D. Girolamo, T. Schneider, A. Singla, T. Hoefler, “High-Performance Routing with Multipathing and Path Diversity in Supercomputers and Data Centers,” accepted at the IEEE Transactions on Parallel and Distributed Systems (TPDS).
  • [8] M. Wahib, H. Zhang, T.T. Nguyen, A. Drozd, J. Domke, L. Zhang, R. Takano, S. Matsuoka, “Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’20, (Piscataway, NJ, USA), IEEE Press, Nov. 2020

FY2019

  • [7] Chapp, D., Rorabaugh, D., Sato, K., Ahn, D. H., & Taufer, M. (2019). A three-phase workflow for general and expressive representations of nondeterminism in HPC applications. The International Journal of High Performance Computing Applications, 33(6), 1175–1184.
  • [6] Tonmoy Dey, Kento Sato, Jian Guo, Bogdan Nicolae, Jens Domke, Weikuan Yu, Franck Cappello and Kathryn Mohror, “Optimizing Asynchronous Multi-level Checkpoint/Restart Configurations with Machine Learning”, In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis 2019 (SC19), Regular Poster, Denver, USA, Nov, 2019.
  • [5] Rupak Roy, Kento Sato, Jian Guo, Jens Domke and Weikuan Yu, “Improving Data Compression with Deep Predictive Neural Network for Time Evolutional Data”, In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis 2019 (SC19), Regular Poster, Denver, USA, Nov, 2019.
  • [4] J. Domke, S. Matsuoka, I.R. Ivanov, Y. Tsushima, T. Yuki, A. Nomura, S. Miura, N. McDonald, D.L. Floyd, N. Dube, “HyperX Topology: First at-scale Implementation and Comparison to the Fat-Tree,” accepted at the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’19, (Piscataway, NJ, USA), IEEE Press, Nov. 2019.
  • [3] Kento Sato, Ignacio Laguna, Gregory L Lee, Martin Schulz, Christopher M Cham-breau, Simone Atzeni, Michael Bentley, Ganesh Gopalakrishnan, Zvonimir Raka-maric, Geof Sawaya, Joachim Protze, and Dong H Ahn. 2019. Pruners: Provid-ing reproducibility for uncovering non-deterministic errors in runs on supercom-puters. Int. J. High Perform. Comput. Appl. 33, 5 (Sep 2019), 777–783.DOI:https://doi.org/10.1177/1094342019834621
  • [2] J. Domke, S. Matsuoka, I.R. Ivanov, Y. Tsushima, T. Yuki, A. Nomura, S. Miura, N. McDonald, D.L. Floyd, N. Dube, “The First Supercomputer with HyperX Topology: A Viable Alternative to Fat-Trees?,” peer-reviewed short paper presented at the 2019 IEEE 26th Symposium on High-Performance Interconnects (HOTI 26), Aug. 2019.
  • [1] J. Domke, K. Matsumura, M. Wahib, H. Zhang, K. Yashima, T. Tsuchikawa, Y. Tsuji, A. Podobas, S. Matsuoka, “Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?,” in Proceedings of the 33th IEEE International Parallel & Distributed Processing Symposium (IPDPS), (Rio de Janeiro, Brazil), IEEE Computer Society, May 2019.