
9

l Background
l Checkpoint-restart (C/R) is one of big I/O workloads in supercomputers
l To facilitate C/R, an application-level C/R tool (VeloC) is installed in Fugaku
l However, while we can specify only variables needed to be checkpointed, thereby, reduce the size of checkpoint data, finding

all necessary variables to restart is challenging in large programs
l Approach

l To remove such manual coding, we developed AutoCheck which automatically detect variables to be checkpointed by static
and dynamic data dependency analysis

l Results
l We successfully detects all the necessary variables for checkpointing in micro-benchmarks and proxy apps
l AutoCheck significantly reduces checkpoint size compared to a system-level C/R tool, BLCR

l Github: https://github.com/zRollman/AutoCheck

AutoCheck: Automatically Identifying Variables for Checkpointing by Data Dependency Analysis
(IEEE/ACM SC24[47])

Xiang Fu†1, Weiping Zhang†1, Xin Huang†1, Wubiao Xu†1, Shiman Meng†1, Luanzheng Guo†2, Kento Sato†3
†1: Nanchang Hongkong University, †2: PNNL, †3: RIKEN,

TABLE II
BENCHMARKS AND APPLICATIONS FOR THE STUDY. OMP MEANS OPENMP; MCLR MEANS “MAIN COMPUTATION LOOP RANGE“ ;LOC MEANS

“LINES OF CODE”. OUR VALIDATIONS ON THOSE BENCHMARKS ARE ALL SUCCESSFUL.

Name Benchmark description LOC Trace
size

Trace
generation
time (s)

Critical variables (Dependency type) MCLR (File name)

Himeno
MPI

Measuring a CPU performance of float-
ing point operation by a Poisson equa-
tion solver (input size 8 ⇥ 8 ⇥ 8)

243 52M 2.91 p (WAR), n (Index) 186-217
(himenobmt.c)

HPCCG
OMP+MPI

Conjugate Gradient benchmark code
for a 3D chimney domain (input size
2 ⇥ 2 ⇥ 2)

3415 2.6M 0.11 t1 (WAR), t2 (WAR), t3 (WAR), r (WAR), x (WAR), p
(WAR), rtrans (WAR), k (Index)

118-146
(HPCCG.cpp)

CG (NPB)
OMP

Conjugate Gradient with irregular
memory access (input size 10⇥8⇥2)

1353 54M 2.28 x (WAR), it (Index) 296-330 (cg.c)

MG (NPB)
OMP

Multi-Grid on a sequence of meshes
(input size 3 ⇥ 3 ⇥ 3)

1677 98M 4.23 u (WAR), r (WAR), it (Index) 259-269 (mg.c)

FT (NPB)
OMP

Discrete 3D Fast Fourier Transform
(input size 8 ⇥ 8 ⇥ 8)

1309 213M 9.11 y (WAR), sum (Outcome), kt (Index) 101-111 (appft.c)

SP (NPB)
OMP

Scalar Penta-diagonal solver (input size
3 ⇥ 3)

3570 42M 2.21 u (WAR), step (Index) 184-190 (sp.c)

EP (NPB)
OMP

Embarrassingly Parallel (input size 3) 625 1.3G 59.75 sy (WAR), q (WAR), sx (WAR), k (Index) 168-213 (ep.c)

IS (NPB)
OMP

Integer Sort, random memory access
(input class 4096)

981 367M 16.32 passed verification (WAR), key array (RAPO),
bucket ptrs (RAPO), iteration (Index)

787-791 (is.c)

BT (NPB)
OMP

Block Tri-diagonal solver (input size
3 ⇥ 3 ⇥ 0.0008)

4216 58M 2.76 u (WAR), step (index) 180-186 (bt.c)

LU (NPB)
OMP

Lower-Upper Gauss-Seidel solver (in-
put size 5 ⇥ 5 ⇥ 5)

4227 1.6G 81.96 u (WAR), rho i (WAR), qs (WAR), rsd (WAR), istep
(Index)

115-267 (ssor.c)

CoMD
(ECP)
OMP+MPI

A proxy application in molecular dy-
namics (MD) often used for particle
motion simulations (input size -x 4 -
y 4 -z 4)

5637 3.4G 59.37 sim (WAR), perfT imer (WAR), iStep (Index) 113-126 (CoMD.c)

miniAMR
(ECP)
OMP+MPI

A large-scale 3D stencil calculation by
Adaptive Mesh Refinement (input size
–nx 2 –ny 2 –nz 2 –max blocks

2)

11531 2.3G 39.32 29 timers (WAR), counter bc (WAR),
total fp adds (WAR), total blocks (WAR),
total fp divs (WAR), total red (WAR), nrs

(WAR), nrrs (WAR),num moved coarsen (WAR),
num moved rs (WAR), num comm uniq

(WAR), num comm tot (WAR), num comm z

(WAR), num comm y (WAR), tmax (WAR),tmin

(WAR),global active (WAR), num comm x

(WAR), blocks (WAR), done (Index), ts (Index)

67-160 (driver.c)

AMG
(ECP)
OMP+MPI

Algebraic Multi-Grid linear system
solver for unstructured mesh physics
packages (input size �problem 2
�n 5 ⇥ 5 ⇥ 5

75000 6.8G 117.39 diagonal (WAR), cum num its (WAR),
cum nnz AP (WAR), hypre global error

(WAR), final res norm (Outcome), j (Index)

462-553 (amg.c)

HACC
OMP+MPI

The Hardware Accelerated Cosmology
Code framework(input size �N 1 �t

2 ⇥ 2 ⇥ 2

32254 12.7G 201.13 particles (WAR),step (Index) 318-523
(driver hires-
local.cxx)

TABLE III
EFFICIENCY STUDY ON 14 BENCHMARKS. OPTIMIZATION MEANS

PARALLEL EXECUTION WITH 48 OPENMP THREADS.

Name Pre-
processing
(With
optimization)
(s)

Dependency
Analysis (s)

Identify
Variables
(s)

Total Time
(With
optimization)
(s)

Himeno 5.44 (0.32) 2.53 5e-3 7.98 (2.86)
HPCCG 0.11 (0.01) 0.03 2e-3 0.14 (0.04)
CG 3.17 (0.2) 1.18 0.02 4.37 (1.4)
MG 5.35 (0.33) 1.12 0.01 6.48 (1.46)
FT 15.93 (0.95) 7.01 0.06 23 (8.02)
SP 2.19 (0.13) 0.55 0.02 2.76 (0.7)
EP 113.18 (6.94) 90.18 2.38 205.74 (99.5)
IS 33.06 (2.04) 11.57 0.05 44.68 (13.66)
BT 3.57 (0.22) 1.54 0.04 5.15 (1.8)
LU 185.07 (12.57) 90.66 0.39 276.12 (103.6)
CoMD 129.47 (7.94) 2e-3 5e-4 129.47 (7.94)
miniAMR 142.97 (8.66) 105.23 0.12 248.32 (114.01)
AMG 327.64 (20.74) 261.43 4.59 593.66 (286.76)
HACC 514.45 (31.53) 301.06 7.92 823.43(340.51)

traces, times for trace generation, and the input size used for
LLVM trace generation.

Benchmarks: We evaluate AutoCheck on 14 HPC ap-
plications, including HPCCG [23], Himeno [24], and all of

TABLE IV
STORAGE COST FOR CHECKPOINTING.

Name Input size BLCR [9] (MBs) AutoCheck (MBs)
Himeno 129 ⇥ 65 ⇥ 65 32550.76 2.53
HPCCG 64 ⇥ 64 ⇥ 64 452202.50 610.9
CG S 16569.47 0.16
MG S 3220.39 2.84
FT S 53616.26 24.6
SP S 20068.88 7.81
EP S 50061.67 0.03
IS S 952.85 2.53
BT S 34042.18 4.69
LU S 17263.79 9.33
CoMD -x 8 -y 8 -z 8 375798.50 241.71
miniAMR –nx 8 –ny 8 –nz 8 –

max blocks 8
30310.90 0.09

AMG -problem 2 -n 40 40 40 647577.68 58.83
HACC -N 8 -t 16⇥16⇥16 837533.14 334.93

the NAS parallel benchmarks (NPB) [25], and three large
HPC proxy applications, CoMD, miniAMR, and AMG, from
the Exascale Computing Project (ECP) proxy application
suite [26], and a real-world cosmology simulation application,
HACC [27]. Table II describes the 14 benchmarks, including
benchmark description and lines of code (LOC) and which file
the main computation loop is located including line numbers

Begin Dynamic
execution

instruction trace

Input: Pre-processing

- Identifying
MLI variables

MLI
variables

Data dependency analysis

- Construct a DDG
between the MLI variables

DDG

Identification of critical
variables

- Identifying critical
variables from the DDG

Critical
variables

Output:

End

Fig. 2. AutoCheck workflow diagram.

hypre_LowerBound, the deepest function call. The data
dependency within hypre_LowerBound played a vital role
in determining checkpointing variables.

(2) Complicated data structure: Taking as an example
sim (SimFlatSt*) in CoMD, a very complicated data
structure, including multiple layers of nested pointers and
function calls. It encompasses data structures such as Domain,
LinkCell, Atoms, SpeciesData, BasePotential,
and HaloExchange, which are extremely complex data
structures defined across many different header files. It turned
out that few components of sim involved in critical dependen-
cies, which make it a critical variable. This is impossible to
capture by eye skimming. Similarly, Particles in HACC
is another example.

(3) Convoluted data dependency: Taking as an example
u(double***[5]) in BT, a 4D array dependent on as
many as 17 other different variables across many distinct
function invocations. Autocheck addresses all the data depen-
dency on u(double***[5]) and finds it involved in Write-
After-Read, which requires checkpointing.

Consequently, manually identifying variables in such com-
plex scenarios is prohibited and prone to mistakes. Thereby, a
tool to identify critical variables is highly favorable.

IV. DESIGN

AutoCheck aims to develop a tool to identify critical
variables automatically. The AutoCheck design (depicted
in Figure 2) includes three modules: pre-processing, data
dependency analysis, and identification of critical variables.

A. Identifying the Main-Loop’s Input (MLI) variables
The critical variables to checkpoint are solicited from the

MLI variables and the induction variables. These variables are
candidates for variables to be checkpointed. An MLI variable
must be defined before but used in the main computation
loop. Within the main computation loop, variables can be
assigned into [zwp: three categories: induction variables , MLI
variables and local variables (defined and used within the main
computation loop). Only the induction variables that are part
of the main loop are critical variables.] Local variables are
re-allocated and re-initialized at every iteration, and therefore
local variables need not to checkpoint. If a variable is defined
before the main computation loop, but within a function call,
we exclude it from our consideration. Because this variable is
a local variable which cannot affect the global execution state.

This module takes the dynamic instruction execution trace
and the main computation loop’s location (start and end line
numbers) as input, and outputs the main-loop’s input variables.
Figure 3 shows the workflow of this module. The workflow

Dynamic
instruction
execution trace

Main computation
loop's beginning
and end locations

Collect the variables
used before the main
computation loop

Collect the variables
used inside the main
computation loop

A

B

Match the variables
obtained from B

The MLI variables

Input Output

A

Fig. 3. Pre-processing workflow.

consists of two parts: collecting the arithmetic variables used
before and inside the main computation loop, and matching
the collected arithmetic variables before and inside the main
computation loop. Arithmetic variables are those variables par-
ticipating in arithmetic operations. These successfully matched
variables (defined before and used inside the main computation
loop) are actually the MLI variables.

Collect arithmetic variables: We collect arithmetic vari-
ables from the code region before and inside the main com-
putation loop. We first partition the trace into three parts:
Part A - before the main computation loop (e.g., Region
‘(a)’ in Figure 4); Part B - the main computation loop (e.g.,
Region ‘(b)’ in Figure 4); and Part C - after the main
computation loop (e.g., Region ‘(c)’ in Figure 4). We then
collect arithmetic variables from Parts A and B. [zwp: Note
that, when POINTER ASSIGNMENT occurs, we recursively
search for the source variable in the assignment operation
based on the operand of the assigned object, and replace the
assigned object to collect it, which is not regarded as Write
or Read.]

Match arithmetic variables: Finally, we match the col-
lected arithmetic variables from Parts A and B. We say two
variables are matched when the two variables’ operand value
and register name are both matched. Note that, although an
operand value can change during the course of its computa-
tions, the operand value does not change before participation
in any arithmetic operations as compared to its value before the
main computation loop. Those successfully matched variables
turn out to be the main computation loop’s input variables,
which are declared before the main computation loop and
referenced within the main computation loop. For the example
code in Figure 4, ‘a’, ‘b’, ‘sum’, ‘s’, ‘r’ are the MLI variables.

B. Data dependency analysis

The data dependency analysis module takes the MLI vari-
ables as input, and tracks the data dependency only between
MLI variables. By doing that, we could understand the read
and write dependencies on each MLI variable, and further

it
s m

1

1
2

r

3

4
5 a

2
9

sum

(c) The generated DDG of the main-loop of the example code

Main-loop-input variables Temporary registers Local variables

12

13

10

11

(d) The contracted DDG

r
a

s

b sumq b

p 8

21
53
54
98

10
11

12
12

(b) reg-reg map(a) reg-var map

1: s - Write;
2: s - Read;
3: r - Read;
4: a - Write;
5: a - Read;
6: b - Write;

7: r - Read;
8: r - Write;
9: a - Read;
10: b - Read;
11: sum - Write

(e) Extracted R/W dependencies

a 6 p

it 1

s 3
r 4

s2

a5

p 8

6

Fig. 5. Data dependency analysis (R/W = Read/Write). Note that reg-var map in (a) is updated on-the-fly while passing dynamic instructions. Thus, reg-var
map only contains active state at a certain point.

0,17,main,21:1,21:1-3,49,199
3,64,0x4009e0,1,foo,
1,64,0x7ffec14b0db0,1,6,
2,64,0x7ffec14b0d80,1,7,
f,64,0x7ffec14b0db0,1,p,
f,64,0x7ffec14b0d80,1,q, Parameters

Arguments

Function name

(b) ‘Call’ instruction followed by its function body

Parameter
indicator

0,19,main,24:0,38,49,777
3,64,0x4008d0,1,pow,
1,64,44.000000,1,36,
2,64,2.000000,1,37,
r,64,1936.000000,1,38,

(a) ‘Call’ instruction only

Register

Function name

Result

Call

0,-1,main,0:0,sum,26,5
1,32,1,0, ,
r,64,0x7ffe11de09bc,1,sum,

(c) ‘Alloca’ instruction for allocation of variable ‘sum’

Alloca

sum’s memory address

Fig. 6. Critical instructions used in analysis, including two forms of ‘Call’
instructions and ‘Alloca’.

used in computations of the function body. We provide an
example of 2) in Figure 6(b), which is the LLVM trace of
the function call foo() from the example code in Figure 4.
In Figure 6(b), registers ‘6’ and ‘7’ are temporary registers
loaded from arguments and registers ‘p’ and ‘q’ are parameters
that are local variables. However, the ‘Call’ instruction itself
only provides correlations between the temporary registers and
parameters. In order to find the correlation between arguments
and parameters, we must track back one instruction to find
the ‘Load’ instructions that generate temporary registers (e.g.,
registers ‘6’ and ‘7’) from arguments. In particular, we append
the correlation found in the ‘Call’ instruction to the existing
pairwise correlations in “reg-var map”, which makes triplet
correlations, indicating the correlation between arguments and
parameters. For example, for the case in Figure 6(b), we
append the correlation between ‘6’ and ‘p’ to the existing cor-
relation in the “reg-var map” (‘a’ and ‘6’), which constructs
the correlation between ‘a’ (argument) and ‘p’ (parameter)
through ‘6’ (see Fig. 5(a)).

Putting all together. The complete DDG is generated using
data dependencies collected in “reg-var map” and “reg-reg
map”. We update DDG with the collected dependencies from
“reg-var map” and “reg-reg map” each time at a ‘Store’
instruction, This is because every computation terminates
by ‘Store’ instructions. Furthermore, we summarize the
instructions examined in data dependency analysis in Table I,

Algorithm 1: Contract vertices that are not MLI
variables from the complete DDG.

Input: The complete DDG

Output: The contracted DDG

1 Function ContractedDDG(complete DDG):
2 for n 2 main loop input variables do
3 Get all parent vertices NP of n;
4 for np 2 NP do
5 if np is not a main loop input variable then
6 Contract(np);

7 Get updated parent vertices NP of n;
8 for np 2 NP do
9 if np is not a main loop input variable then

10 Contract np while retaining its dependency with n;

11 return contracted DDG;

// Contract each parent vertex recursively
12 Function Contract(p):
13 Get all parent vertices PP of p;
14 Contract p, meaning to replace p with its parent vertices;
15 if all vertices in PP are main loop input variables or PP is empty

then
16 break;
17 else
18 for pp 2 PP do
19 if pp is not a main loop input variable then
20 Contract(pp);

including how and where they are used.
2) DDG contraction: Our goal of data dependency analysis

is to generate DDG on the MLI variables only. We propose
an effective algorithm to contract the unnecessary vertices
that are not MLI variables from the DDG. In particular, the
algorithm takes the complete DDG from the last step as
input, and replaces the parent of each MLI variable (if it has
a parent) with its grandparent (parent’s parent) until all its
parents become MLI variables or the DDG does not change
any more. To the end, when the iterations break out, a MLI
variable’s parent remains not a MLI variable and this parent
has no parents, we contract this parent vertex from DDG
while retaining its dependencies. Eventually, all vertices in
the contracted DDG become MLI variables. We describe this
in Algorithm 1. We describe an example in Figure 5, in which
(c) is the complete DDG and (d) is the contracted DDG. Take
‘sum’ (a MLI variable) as an example, we first replace ‘13’
with ‘m’ which contracts ‘13’ and makes ‘m’ point to ‘sum’
directly. We then contract ‘m’ and make ‘12’ point to ‘sum’,
after that, contract ‘12’ and point ‘10’ and ‘11’ to ‘sum’, and
finally contract ‘10’ and ‘11’ and point ‘a’ and ‘b’ to ‘sum’.

[47] Xiang Fu, Weiping Zhang, Xin Huang, Wubiao Xu, Shiman Meng, Luanzheng Guo, Kento Sato, “AutoCheck: Automatically Identifying Variables for Checkpointing by Data Dependency
Analysis”, SC ’24: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA

https://github.com/zRollman/AutoCheck

