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e Background
o DNN models have grown rapidly in accuracy, but this progress has come with a training cost (e.g., 100Bs-Ts params) Best Paper Award

Training large models takes tremendous time and memory capacity — Parallel training, but challenging in decomposition

®
o Auto-parallelization (e.g., Alpa) finds the optimal balance of DP/TP/PP without expertise for parallel training in HPC systems
e XLA is a domain-specific compiler, XLA: high-level computation graph (e.g., JAX, PyTorch) - Optimized machine code ‘ EEQE coliin.
e An XLA compiler in Alpa produces inefficient all-reduce stages in PP backward computation [Fig.1] Best Paper Awardil
e Approach: Comm-Shift Optimization at the level of an XLA compiler used in Alpa *XLA: Accelerated Linear Algebra R
e We analyze computation graph and shift gradient-averaging communication from backward to parameter update [Fig.2] myg'"’ica“"" f;;;;ﬁgm%"fm';;;a;;fjmn
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- eliminate synchronization time from one pipeline stage from another - Reduce overall training times

e Results
e Comm-Shift improves the training performance across various models up to 27% at maximum (GPT-J-6B) [Table 1]

e Improvement becomes more significant with more communication in larger models
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