
10

l Background
l Applications can include non-deterministic (ND) bugs due to use of asynchronous algorithms by multi-threading, asynchronous communications
l ND bugs require significant amount of time to reproduced, identify and fix them
l We developed ReMPI for MPI record-and-replay (R&R) [1] and for R&R hybrid parallelism, we extended ReMPI support R&R for OpenMP

l Approach:
l We developed an OpenMP recode-and-replay tool (ReOMP) to reproduce ND behaviors in OpenMP by recording order of threads executing: Critical 

section, Reduction, Atomic operations, data racy accesses
l However, recording thread scheduling behavior easily lead I/O performance bottleneck 
l To reduce I/O performance bottleneck, we proposed efficient distributed order recording which can be used for other order-record problem

l Results
l We could minimize I/O performance overhead for recording thread scheduling behaviors
l We successfully R&R non-determinism in MPI+OpenMP hybrid proxy applications (e.g., HACC, HPCCG, miniFE, QuickSilver and AMG)

l Github: https://github.com/PRUNERS/ReMPI

Fig. 13: Execution time of OpenMP
AMG

Fig. 14: Execution time of OpenMP
QuickSilver

Fig. 15: Execution time of OpenMP
miniFE

Fig. 16: Execution time of OpenMP
HACC

Fig. 17: Execution time of OpenMP
HPCCG

Fig. 18: Execution time of
OpenMP+MPI HACC

Fig. 19: Execution time of
OpenMP+MPI HPCCG Fig. 20: The number of occurrences of

each epoch size

Record Replay
DC DE DC DE

AMG 0.97 0.95 3.32 4.49
QuickSilver 1.05 1.02 1.93 2.06

miniFE 1.11 1.15 2.87 3.58
HACC 1.2 1.29 4.01 5.61

HPCCG 0.97 0.90 1.91 3.37

TABLE X: Factors of performance im-
provement of DC/DE recording over
ST recording in 112 threads

which is important for reducing overhead.

C. Case Study: Integration with ReMPI

As we described reproducibility challenges for debugging
and testing in Section II, we must record and replay both
message passing and shared-memory access events for re-
producing behavior of hybrid parallel applications. In these
complex applications, a complex network of interactions be-
tween MPI processes and OpenMP threads is formed through
MPI message passing and shared memory access. Specifically,
potential race conditions in MPI message passing and shared
memory accesses make the communication sequence between
processes and threads unpredictable. This uncertainty is not
only reflected in the timing of data exchange, but also extends
to the execution order of floating-point operations, which leads
to inconsistent numerical results across executions.

For the recording and replaying of non-deterministic
MPI+OpenMP applications, our carefully-determined ReOMP
design enables hybrid use of ReOMP+ReMPI by simply
preloading ReMPI library to maximize the usability for the
users.

If an application does not require MPI THREAD MULTIPLE
for the level of thread support, independent application of
ReMPI and ReOMP is enough for reproducing the appli-
cation’s behavior. However, if the application does require
MPI THREAD MULTIPLE, different threads can potentially re-
ceive different messages from run to run depending on
which threads call MPI functions. We can easily record
and replay such non-deterministic MPI calls by instrument-
ing the gate in/out functions before and after MPI re-
ceive (MPI Recv), wait (MPI Wait family), test (MPI Test
family) and probe (MPI Probe/Iprobe) functions. Our design
choice easily enables such a composition.

Finally, we apply ReMPI+ReOMP to MPI+OpenMP appli-
cations HACC and HPCCG that we described in Section II-B.

Figure 18 and Figure 19 show the execution times of
HACC and HPCCG in different number of threads. According
to the topology of System X, we experimented with these
applications with different combinations of nodes, processes,
and threads with a fixed input data size (i.e., number of threads
ranging from 24 to 4800). As can be seen from the figures,
our approach is able to record and successfully replay the

Distributed Order Recording Techniques for Efficient Record-and-Replay of Multi-threaded Programs
(IEEE Cluster 2024 [49])

Xiang Fu†1, Shiman Meng†1, Weiping Zhang†1, Luanzheng Guo†2, Kento Sato†3,
 Dong H. Ahn†4, Ignacio Laguna†5, Gregory L. Lee†5, Martin Schulz†6

†1: Nanchang Hongkong University, †2: PNNL, †3: RIKEN, †4: NVIDIA, †5: LLNL, †6: Technical University of Munich 

[49] Xiang Fu, Shiman Meng, Weiping Zhang, Luanzheng Guo, Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee, Martin Schulz, “Distributed Order Recording Techniques for 
Efficient Record-and-Replay of Multi-threaded Programs”, IEEE Cluster 2024, Kobe, Hyogo, Japan. (Best Paper Nomination)
[1] Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee and Martin Schulz, “Clock Delta Compression for Scalable Order-Replay of Non-Deterministic Parallel Applications”, In 
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis 2015 (SC15), Austin, USA, Nov, 2015

<SMA region>
gate_in();
<SMA region>
gate_out();

Original code Instrumented code
Thread 2
Thread 3
Thread 1

:

record

replay

Record file

<SMA region>: Shared memory access region

Fig. 1: The gate in/out functions

(1) Data race 
detector

Report
file

(2) Instrumentation with 
ReOMP LLVM IR pass 
(linking libreomp.so)

A
pp

lic
at

io
n

A
pp

lic
at

io
n

(in
st

ru
m

en
te

d
ex

ec
ut

ab
le

)
(3) Record

Record file

(4) Replay
Reproduction of (3)

Fig. 2: Design overview

III. REOMP: TOOL FLOW

In shared-memory applications, non-determinism may occur
when threads access shared variables in a different order from
a previous run. We can reproduce a particular run by recording
and replaying the order of shared variable accesses made by
threads. To accomplish this, we add instrumentation functions
(gate in/out) before and after a code region where shared-
memory accesses occur (Figure 1). The gate in/out func-
tions are responsible for recording the order of threads entering
shared memory access regions (SMA region in Figure 1) in
a record run and for replaying the same order in subsequent
replay runs. The shared-memory access region can be a single
instruction or multiple instructions.

Typically, in a multi-threaded application, critical sec-
tions (e.g., mutex lock/unlock functions) and/or atomic in-
structions are used when multiple threads may simultaneously
access shared variables. We can easily identify these function
calls and instructions, and then instrument them with our
gate in/out functions. Data races, a condition where two or
more threads concurrently access the same memory location
and at least one of these accesses is a write instruction,
are another source of simultaneous shared-memory accesses.
Unlike critical sections and atomic instructions, there is no
obvious indication of data races in source codes.

Lenny: we have to work on this paragraph together. To
bridge this gap, we first apply a data-race detector called
Tsan [24] which integrated within clang to detect those
races (step (1) in Figure 2). By compiling with -g and -
fsanitize=thread, it detects data races in the application at
runtime, capturing information such as function call stacks,
absolute paths, line numbers, column numbers and etc., and
generates a report file. We defined two classes: data race and
call func and instantiated objects of these classes based on the
report file. Each data race has its function call stacks. Using
function call information as input, we generated a unique
hash value for each function call using a hash algorithm.
Finally, these hash values were further computed to generate a
composite hash value for the data race to which these function
calls belong. These hash values will serve as lock IDs to

Thread 2

Clock: 1
:

re
co

rd

re
pl

ay

Thread 3

Clock: 2
:

re
co

rd

re
pl

ay

Thread 1

Clock:3
:

re
co

rd

re
pl

ay

(b) DC recording

Thread 2

Thread: 2
Thread: 3
Thread: 1

:

re
co

rd

re
pl

ay

Thread 3
record

replay

Thread 1

(a) ST recording

record

replay

Fig. 3: ST and DC recording

control the order of thread access to shared memory. 1

Next, we instrument all shared-memory-access regions in
critical sections, atomic instructions and data races with
gate in/out (step (2) in Figure 2). For data race, based
on the current code’s information (such as the name of
the function it’s in, the absolute path, the row and column
numbers, etc.), we compute a hash value (using the same
hash algorithm mentioned earlier). We use this hash value to
determine whether the code is involved in a data race.

We then run the instrumented executable to record the
application’s behavior (step (3) in Figure 2). Finally, we replay
the behavior based on the ReOMP record file for debugging
and testing (step (4) in Figure 2).

IV. SCALABLE RECORDING TECHNIQUES FOR SHARED
MEMORY ACCESSES

As explained in Section II, efficient shared-memory ac-
cess recording is critical for reducing the overall overhead
of recording and replaying hybrid parallel applications. In
this section, we first describe a traditional approach before
presenting two novel techniques that can significantly improve
upon it. We choose to introduce these techniques gradually as
each later technique builds on the previous solution.

The traditional approach is referred as serialized thread ID
recording (ST recording) which records the order of thread IDs
entering the gate in/out functions (in Section IV-A). In con-
trast, our distributed clock recording (DC recording) records
the logical clocks at which threads enter gate in/out (in
Section IV-B). In Section IV-C, we compare ST and DC
recording with respect to the record-and-replay efficiency.
Finally, our distributed epoch recording (DE recording) further
improves upon them by recording the logical epoch during
which threads can concurrently enter gate in/out without
breaking the correctness of replay (in Section IV-D).

A. Serialized Thread ID Recording (ST Recording)
For recording and replaying the order of concurrent shared-

memory accesses, a traditional approach is ST recording (Fig-
ure 3-(a)). This approach records thread IDs in the order that
threads access shared variables.

Figure 4 shows the pseudo-code of ST recording. In the
record run, after a thread executes the shared-memory ac-
cess region (Line 3), the thread gets its thread ID (Line 6)

1ReOMP does not require the application developers to fix the detected
data races at this phase since the primary objective of use of ReOMP is not
replaying bugs but fixing bugs. In the ReOMP workflow, users are advised to
fix data races that are regarded as actual bugs. However, even if the developers
do not fix such bugs, it does not hamper the ability of ReOMP record-and-
replay.

<SMA region>
gate_in();
<SMA region>
gate_out();

Original code Instrumented code
Thread 2
Thread 3
Thread 1

:

record

replay

Record file

<SMA region>: Shared memory access region

Fig. 1: The gate in/out functions

(1) Data race 
detector

Report
file

(2) Instrumentation with 
ReOMP LLVM IR pass 
(linking libreomp.so)

A
pp

lic
at

io
n

A
pp

lic
at

io
n

(in
st

ru
m

en
te

d
ex

ec
ut

ab
le

)

(3) Record

Record file

(4) Replay
Reproduction of (3)

Fig. 2: Design overview

III. REOMP: TOOL FLOW

In shared-memory applications, non-determinism may occur
when threads access shared variables in a different order from
a previous run. We can reproduce a particular run by recording
and replaying the order of shared variable accesses made by
threads. To accomplish this, we add instrumentation functions
(gate in/out) before and after a code region where shared-
memory accesses occur (Figure 1). The gate in/out func-
tions are responsible for recording the order of threads entering
shared memory access regions (SMA region in Figure 1) in
a record run and for replaying the same order in subsequent
replay runs. The shared-memory access region can be a single
instruction or multiple instructions.

Typically, in a multi-threaded application, critical sec-
tions (e.g., mutex lock/unlock functions) and/or atomic in-
structions are used when multiple threads may simultaneously
access shared variables. We can easily identify these function
calls and instructions, and then instrument them with our
gate in/out functions. Data races, a condition where two or
more threads concurrently access the same memory location
and at least one of these accesses is a write instruction,
are another source of simultaneous shared-memory accesses.
Unlike critical sections and atomic instructions, there is no
obvious indication of data races in source codes.

Lenny: we have to work on this paragraph together. To
bridge this gap, we first apply a data-race detector called
Tsan [24] which integrated within clang to detect those
races (step (1) in Figure 2). By compiling with -g and -
fsanitize=thread, it detects data races in the application at
runtime, capturing information such as function call stacks,
absolute paths, line numbers, column numbers and etc., and
generates a report file. We defined two classes: data race and
call func and instantiated objects of these classes based on the
report file. Each data race has its function call stacks. Using
function call information as input, we generated a unique
hash value for each function call using a hash algorithm.
Finally, these hash values were further computed to generate a
composite hash value for the data race to which these function
calls belong. These hash values will serve as lock IDs to

Thread 2

Clock: 1
:

re
co

rd

re
pl

ay

Thread 3

Clock: 2
:

re
co

rd

re
pl

ay

Thread 1

Clock:3
:

re
co

rd

re
pl

ay

(b) DC recording

Thread 2

Thread: 2
Thread: 3
Thread: 1

:

re
co

rd

re
pl

ay

Thread 3
record

replay

Thread 1

(a) ST recording

record

replay

Fig. 3: ST and DC recording

control the order of thread access to shared memory. 1

Next, we instrument all shared-memory-access regions in
critical sections, atomic instructions and data races with
gate in/out (step (2) in Figure 2). For data race, based
on the current code’s information (such as the name of
the function it’s in, the absolute path, the row and column
numbers, etc.), we compute a hash value (using the same
hash algorithm mentioned earlier). We use this hash value to
determine whether the code is involved in a data race.

We then run the instrumented executable to record the
application’s behavior (step (3) in Figure 2). Finally, we replay
the behavior based on the ReOMP record file for debugging
and testing (step (4) in Figure 2).

IV. SCALABLE RECORDING TECHNIQUES FOR SHARED
MEMORY ACCESSES

As explained in Section II, efficient shared-memory ac-
cess recording is critical for reducing the overall overhead
of recording and replaying hybrid parallel applications. In
this section, we first describe a traditional approach before
presenting two novel techniques that can significantly improve
upon it. We choose to introduce these techniques gradually as
each later technique builds on the previous solution.

The traditional approach is referred as serialized thread ID
recording (ST recording) which records the order of thread IDs
entering the gate in/out functions (in Section IV-A). In con-
trast, our distributed clock recording (DC recording) records
the logical clocks at which threads enter gate in/out (in
Section IV-B). In Section IV-C, we compare ST and DC
recording with respect to the record-and-replay efficiency.
Finally, our distributed epoch recording (DE recording) further
improves upon them by recording the logical epoch during
which threads can concurrently enter gate in/out without
breaking the correctness of replay (in Section IV-D).

A. Serialized Thread ID Recording (ST Recording)
For recording and replaying the order of concurrent shared-

memory accesses, a traditional approach is ST recording (Fig-
ure 3-(a)). This approach records thread IDs in the order that
threads access shared variables.

Figure 4 shows the pseudo-code of ST recording. In the
record run, after a thread executes the shared-memory ac-
cess region (Line 3), the thread gets its thread ID (Line 6)

1ReOMP does not require the application developers to fix the detected
data races at this phase since the primary objective of use of ReOMP is not
replaying bugs but fixing bugs. In the ReOMP workflow, users are advised to
fix data races that are regarded as actual bugs. However, even if the developers
do not fix such bugs, it does not hamper the ability of ReOMP record-and-
replay.

https://github.com/PRUNERS/ReMPI

