Compression of Time Evolutionary Image Data through Predictive Deep Neural Networks
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e Background:
e The next-generation detector (CITIUS) in the SPring-8 Center (RSC) generate about 100~400 PB
e To analyze and/or train an AI model with the data, data transfer from the sensors to a large-scale computer is necessary
e However, the transfer of large data becomes a performance bottleneck for this data pipeline
e Approach:
e We has been developing and enhancing an Al-based data compression tool (TEZip)
e The Al model predicts or reconstruct target images and TEZip only store the delta values (Fig.1)
. E.g.) PredNet: 1st image fame —[predict]-> 2nd, 3rd --- Nth image frame
. B: Original image frames, P: Predicted image frames, D: Difference between B and P, C: Compressed image frames by a series of encoding
e Pre-processing (by Al Training): Train a NN to learn the pattern of the movement of the specimen (Fig.1)
Data (De)compression (by AI Inference): Predict future images, compute delta and apply encoding/compressor (Fig.1)
° Results (Fig.8, 10):
e TEZip gives higher compression ratio than major compression tools (e.g., X.265, SZ)
e Lossless mode: 9 to 15 / Lossy mode (w/ a few % of errors): 40 to 50
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Fig 1. Workflows of TEZIP (de)compression

Fig. 8. Compression ratio with lossless compressors.

Fig. 10. Compression ratio with different lossy compressors
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