Refactoring TEZIp:

Integrating Python-Based Predictive Compression
Into an HPC C++/LibTorch Environment
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1. BACKGROUND 3. EVALUATION

T1: CIS - Nile University, 12: RIKEN Center for Computational Science

e TEZip [1]: Data compression tool by AI predicting future Benchmark Datasets
frames and storing only the delta
e Supported AI models: PredNet and ConvLSTM ?}tTt;It 1 D;n%min {l'ge:g(r Slze Train7 r‘Val i Tost7# siyi\(}B
e Need for Speed: A {0;1(.‘ OOt:{%O 3r(..?><1r2%2 )2 1(‘3 813 ‘
. . . NYX Cosmology 012 %512 6144 250 2.7 GB
o HPC rEqUIres efficient I/ O and data reduction Hurricane Isabel Weather Simulation 500 x500 680 34 1.25 GB

e TEZIp's Python-based implementation: TensorFlow, later
moved to PyTorch [2], but faced performance bottlenecks
(Python’s GIL, repeated data conversions)

Table 3.1 Datasets: KITTI[4], NYX[5], and Hurricane Isabel[5]

Summary: LibTorch eliminates Python Overhead !!

How can we make TEZip faster ?

Category Hurricane ISABEL | KITTI | NYX
Whole Training Time 4x 1.1x 1.6x
7 APPROACH Total Compression Time 11x 13x 13.7x
Total Decompression Time 3.7X DX 4x
TEZ|p Al-based Data Compression Too|l Table 3.2 Performance Summary for each dataset
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Overall time Performance: Libtorch vs. PyTorch on Hurricane ISABEL

e Key stages:
o Data creation: Converts raw images into HDF5/HKL files for
training and validation
e Model training: Trains a predictive neural network to
accurately predict future frames
o Compression: Predict frames and stores only the difference

Bm Libtorch
B PyTorch

Average Time (s)

e Decompression: Restore original frames by adding deltas | . el Figure 3.6 Original image (left) vs.
back to the predicted frames Predicted (right) image
e Error-bound Function Figure 3.5 Overall Time on Hurricane with 10% error-bound in KITTI

e TEZIp provides user-specified threshold controlling how much
each pixel can deviate from its original value

We accelerates key stages in TEZip by LibTorch e e e e (Sl ve BerBound L Gocompression Time (s) vs Error Bound

4.1809  685.6334 —e— PyTorch 300 - 3.418 -0 = 95.4038

258.9681]

e Use of LibTorch: C++ based PyTorch implementation -- free
of Python overhead to achieve performance improvement

.8516

e C++/LibTorch Refactor: Eliminates Python's GIL and
overhead, running training, delta storage, and reconstruction on
optimized GPU kernels.

e Seamless Integration: Seamlessly deployable on multi-core
CPU/GPU clusters and remains model-agnostic for additional Figure 3.7 Compression Time Figure 3.8 Decompression Time

deep models while maintaining
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4. CONCLUSION AND FUTURE WORK

e Conclusion e Future work:
o Refactoring TEZip with C+4/LibTorch o Evaluate TEZip on additional scientific datasets
e Highly efficient: Training up to 4x / Compression ~13x / and new predictive models
Decompression ~4x by eliminating Python overhead Please find Mina’s CV at this QR code
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