Refactoring TEZIp:

Integrating Python-Based Predictive Compression
Into an HPC C++/LibTorch Environment

Mina Yousef 1, Amarjit Singh 2, Kento Sato 2

N

Nile University

Ll dmals

) Omi
arz=n R-CCS

1. BACKGROUND 3. EVALUATION

T1: CIS - Nile University, 12: RIKEN Center for Computational Science

e TEZip [1]: Data compression tool by AI predicting future Benchmark Datasets
frames and storing only the delta
e Supported AI models: PredNet and ConvLSTM ?}tTt;It 1 D;n%min {l'ge:g(r Slze Train7 r‘Val i Tost7# siyi\(}B
e Need for Speed: A {0;1(.‘ OOt:{%O 3r(..?><1r2%2)2 1(‘3 813 ‘
. . . NYX Cosmology 012 %512 6144 250 2.7 GB
o HPC rEqUIres efficient I/ O and data reduction Hurricane Isabel Weather Simulation 500 x500 680 34 1.25 GB

e TEZIp's Python-based implementation: TensorFlow, later
moved to PyTorch [2], but faced performance bottlenecks
(Python’s GIL, repeated data conversions)

Table 3.1 Datasets: KITTI[4], NYX[5], and Hurricane Isabel[5]

Summary: LibTorch eliminates Python Overhead !!

How can we make TEZip faster ?

Category Hurricane ISABEL | KITTI | NYX
Whole Training Time 4x 1.1x 1.6x
7 APPROACH Total Compression Time 11x 13x 13.7x
Total Decompression Time 3.7X DX 4x
TEZ|p Al-based Data Compression Too|l Table 3.2 Performance Summary for each dataset

Original frames (or decompressed 1mage frames) K t " TEZ I t d b L bT h
o
ey stages In IP are accelerale Y LIDIOIC
oo 00

B, B, B. 5,

Time cvolutionary data I f * * * Overall time Performance: Libtorch vs. PyTorch on KITTI dataset Overall time Performance: Libtorch vs. PyTorch on NYX dataset
(Training data) : : P Tionsd foamies i 52 mmm Libtorch °22% mmm Libtorch
'.l / ! L - 0 mmm PyTorch] mmm PyTorch
1
1 >
. P P eeceoe P
Time P> —)> 1 2 n
| evolutionary - 0 3 0 3
| g Trained model Dielta frames /= £
clta frames = =0 B 26863
'/ 1) () :
%ﬁ 3 294.78 %
o o
@ D ccee D Z 201 1875

! 2 n 99999

=) : Model training : '
. : Compressed —
=2 : Compression workflow ! | frames] . 61.83 =
48.50 :
===9 : Decompression workflow B C ceee C oL — LJ))) |)
il (s) o . (s) . . (s)) : (s) \ file (s . Time (s ; Time (s . Time (s
0 2 n Cfeate nkl file O\Iera“ _‘,‘_a‘n\ng T‘m_‘_eota\ CompreSS\on T_\\—ro::\ Decompress\of\ Time Crea'[e nk O\/era“ Traini g W\ i , Comp sion _\‘— o o Mnp ession \

i . . Figure 3.3 Overall Time on KITTI Fi e3.40 Il Ti NY X
Figure 1 TEzip Architecture 9 Mk 'gur VRl e e

Overall time Performance: Libtorch vs. PyTorch on Hurricane ISABEL

e Key stages:
o Data creation: Converts raw images into HDF5/HKL files for
training and validation
e Model training: Trains a predictive neural network to
accurately predict future frames
o Compression: Predict frames and stores only the difference

Bm Libtorch
B PyTorch

Average Time (s)

e Decompression: Restore original frames by adding deltas | . el Figure 3.6 Original image (left) vs.
back to the predicted frames Predicted (right) image
e Error-bound Function Figure 3.5 Overall Time on Hurricane with 10% error-bound in KITTI

e TEZIp provides user-specified threshold controlling how much
each pixel can deviate from its original value

We accelerates key stages in TEZip by LibTorch e e e e (Sl ve BerBound L Gocompression Time (s) vs Error Bound

4.1809 685.6334 —e— PyTorch 300 - 3.418 -0 = 95.4038

258.9681]

e Use of LibTorch: C++ based PyTorch implementation -- free
of Python overhead to achieve performance improvement

.8516

e C++/LibTorch Refactor: Eliminates Python's GIL and
overhead, running training, delta storage, and reconstruction on
optimized GPU kernels.

e Seamless Integration: Seamlessly deployable on multi-core
CPU/GPU clusters and remains model-agnostic for additional Figure 3.7 Compression Time Figure 3.8 Decompression Time

deep models while maintaining

Total Compression Time (s)
N w o w [«)]
Total Decompression Time (s)

] 73.5129 65.1568
51.1523 .- &3 : : 62.7765 63.3263
1523 _—= ——_44.5245 43.9262 43.9354 37.8476 57 9209 62.4653 62.4351 7

h—

55,4+529 63.2:497 59.1818 55 7644

0- | | | . . | . | 50 - . .] . ‘ . . .
le-07 le-06 le-05 0.0001 0.001 0.01 0.1 0.5 le-07 le-06 le-05 0.0001 0.001 0.01 0.1 0.5
Error Bound Error Bound

vS. Error-bound on KITTI vS. Error-bound on KITTI

4. CONCLUSION AND FUTURE WORK

e Conclusion e Future work:
o Refactoring TEZip with C+4/LibTorch o Evaluate TEZip on additional scientific datasets
e Highly efficient: Training up to 4x / Compression ~13x / and new predictive models
Decompression ~4x by eliminating Python overhead Please find Mina’s CV at this QR code
1] Rupak Roy et al., “Compression of time evolutionary image data through predictive deep neural networks”, IEEE/ACM CCGrid2021, doi: 10.1109/CCGrid51090.2021.00014, 2021
2] Akshay Nambudiripad et al “Development of TEZip in PyTorch: Integrating new prediction models into an existing compression framework”, SC 24 (Poster), 2024
3] William Lotter et al., “Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning, URL https://arxiv.org/abs/1605.08104, 2017
4] Sun, Haodong et al., “Tourism Demand Forecasting of Multi-Attractions with Spatiotemporal Grid: a Convolutional Block Attention Module Model”, Information Technology & Tourism , 2023
5] Andreas Geiger et al, “Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite”, In 2012 IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2012. 6248074.

Acknowledgement: This work has been supported by the COE research grant in computational science from Hyogo Prefecture and Kobe City through Foundation for Computational Science.
This work ("AI for Science" supercomputing platform project) was supported by the RIKEN TRIP initiative (System software for Al for Science).

https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104

